Una permutación de objetos implica orden mientras que una combinación no toma el orden de los objetos considerados.
Definición:Dado un conjunto que contiene n elementos distintos X = {x1, x2, .... xn}
a) Una permutación de X es una ordenación de los n elementos x1, x2, .... xn
b) Una permutación–r (ó r-permutación) de X donde r n, es una ordenación de un subconjunto de r elementos de X.
c) El numero de permutaciones-r de un subconjunto de n elementos distintos se denota P(n, r)
d) Una combinación-r (r-combinación) es una selección no ordenada de r elementos de X, es decir, un subconjunto de r elementos de X.
e) El numero de combinaciones-r de un conjunto de n elementos distintos y se denota C(n, r) ó bien .
Algunas permutaciones de X son: abc, acb, bac
Algunas permutaciones-2 de X son: ab, ba, ca
Algunas combinaciones-2 de X son: {a, b}, {a, c}, {b, c}
Teorema:
El número de permutaciones-r de un conjunto de n objetos distintos es
El número de permutaciones-r de un conjunto de n objetos distintos es
P(n, r) =(n)(n -1)(n - 2)...(n - r +1)
La demostración es directa aplicando la regla b) del producto.
Por este teorema el número de permutaciones-2 de X = {a, b, c} es 6, las cuales son: ab, ac, ba, bc, ca, cb
También por este Teorema el número de permutaciones en un conjunto de n elementos es
P(n, n) = (n)(n -1)(n - 2)...(3)(2)(1) = n!
Observese que P(n, r)·(n - r)! = n!, por lo que
No hay comentarios:
Publicar un comentario