Ejemplo 1: Se lanzan un dado. Usted gana $ 3000 pesos si el resultado es par ó divisible por tres ¿Cuál es la probabilidad de ganar ?
Lo que primero hacemos es definir los sucesos :
Sea A = resultado par : A = { 2, 4, 6 }
Sea B = resultado divisible por 3 : B = { 3, 6 } . Ambos sucesos tienen intersección ?
Luego,
Ejemplo 2 : Se tiene una baraja de cartas ( 52 cartas sin jockers), ¿ Cuál es la probabilidad de sacar una Reina ó un As ?
Sea A = sacar una reina y sea B = sacar un as, entonces :
1) Sea A el suceso de sacar un As de una baraja estándar de 52 cartas y B sacar una carta con corazón rojo. Calcular la probabilidad de sacar un As o un corazón rojo o ambos en una sola extracción.
Solución:
A y B son sucesos no mutuamente excluyentes porque puede sacarse el as de corazón rojo.
Las probabilidades son:
Reemplazando los anteriores valores en la regla general de la adición de probabilidades para eventos no mutuamente excluyentes se obtiene:
2) En una urna existe 10 bolas numeradas del 1 al 10. ¿Qué probabilidad existe de sacar en una sola extracción una bola enumerada con un número par o con un número primo?
Solución:
O también, realizando un diagrama de Venn-Euler se obtiene:
3) En una clase, 10 alumnos tienen como preferencia solamente la asignatura de Matemática, 15 prefieren solamente Estadística, 20 prefieren Matemática y Estadística y 5 no tienen preferencia por ninguna de estas asignaturas. Calcular la probabilidad que de un alumno de la clase seleccionado al azar tenga preferencia por Matemática o Estadística o ambas asignaturas.
Solución:
Realizando un diagrama de Venn-Euler se obtiene:
Simbología:
S = espacio muestral
A= Matemática
B = Estadística
a = Solamente Matemática
b = Solamente Estadística
c = Matemática y Estadística
d = Ninguna de las dos asignaturas
Datos y cálculos:
Entonces, aplicando la fórmula de la probabilidad teórica se obtiene:
Los cálculos en Excel se muestran en la siguiente figura:
4) En un grupo de 50 personas, 6 tienen como preferencia solamente el color amarrillo, 10 prefieren solamente el color blanco, 6 prefieren el color amarrillo y blanco, 10 prefieren el color blanco y café, 12 prefieren el color amarrillo y café, 4 prefieren los 3 colores y 10 no tienen preferencia por ninguno de los tres colores.
4.1) Elaborar un diagrama de Venn-Euler
4.2) Calcular la probabilidad que de una persona del grupo seleccionada al azar tenga preferencia por lo menos uno de los tres colores.
Solución:
4.2)
Entonces, aplicando la fórmula de la probabilidad teórica se obtiene:
Nota:
Si A, B y C son tres eventos cualesquiera de modo que ocurra A o bien B o bien C o bien los tres a la vez se emplea la regla:
Observando el diagrama de de Venn-Euler se tiene que:
Reemplazando valores en la regla se obtiene:
Los cálculos en Excel se muestran en la siguiente figura:
No hay comentarios:
Publicar un comentario